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ON THE HYERS-ULAM STABILITY OF AN ADDITIVE

FUNCTIONAL INEQUALITY

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park***

Abstract. In this paper, we prove the generalized Hyers-Ulam
stability of the additive functional inequality

‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖
in Banach spaces.

1. Introduction and preliminaries

In 1940, Ulam [6] suggested the stability problem of functional equa-
tions concerning the stability of group homomorphisms as follows: Let
(G, ◦) be a group and let (H, ?, d) be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ = δ(ε) > 0 such that if a
mapping f : G → H satisfies the inequality

d
(
f(x ◦ y), f(x) ? f(y)

)
< δ

for all x, y ∈ G, then a homomorphism F : G → H exits with

d
(
f(x), F (x)

)
< ε

for all x ∈ G?
In 1941, Hyers [2] gave a first (partial) affirmative answer to the

question of Ulam for Banach spaces as follows: If δ > 0 and if f : E → F
is a mapping between Banach spaces E and F satisfying∥∥f(x+ y)− f(x)− f(y)

∥∥ ≤ δ
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for all x, y ∈ E, then there is a unique additive mapping A : E → F such
that ∥∥f(x)−A(x)

∥∥ ≤ δ
for all x, y ∈ E.

We will recall a fundamental result in fixed point theory for explicit
later use.

Theorem 1.1. (The alternative of fixed point) [1, 5]
Suppose we are given a complete generalized metric space (X , d) and a
strictly contractive mapping Λ : X → X , with the Lipschitz constant L.
Then, for each given element x ∈ X , either

d(Λnx,Λn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such
that

(a) d(Λnx,Λn+1) <∞ for all n ≥ n0;
(b) The sequence (Λnx) is convergent to a fixed point y∗ of Λ;
(c) y∗ is the unique fixed point of Λ in the set

Y = {y ∈ X|d(Λn0 , y) <∞};
(d) d(y, y∗) ≤ 1

1−Ld(y,Λy) for all y ∈ Y.

2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let X be a normed linear space and Y a
Banach space. In 2007, Park, Cho and Han [4] proved the Hyers-Ulam
stability of the additive functional inequality∥∥f(x) + f(y) + f(z)

∥∥ ≤ ∥∥f(x+ y + z)
∥∥

in Banach spaces. In 2011, Lee, Park and Shin [3] prove the Hyers-Ulam
stability of the additive functional inequality∥∥f(2x) + f(2y) + 2f(z)

∥∥ ≤ ∥∥2f(x+ y + z)
∥∥

in Banach spaces.
In this paper, we prove the generalized Hyers-Ulam stability of the

additive functional inequality

‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖

in Banach spaces.
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Lemma 2.1. Let f : X → Y be a mapping. Then it is additive if and
only if it satisfies

(2.1) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖

for all x, y, z ∈ X .

Proof. If f is additive, then clearly∥∥f(x− y) + f(y − z) + f(z)
∥∥ =

∥∥f(x)
∥∥

for all x, y, z ∈ X .
Assume that f satisfies (2.1). Letting x = y = z = 0 in (2.1), we gain∥∥3f(0)

∥∥ ≤ ∥∥f(0)
∥∥ and so f(0) = 0. Putting x = z = 0 in (2.1), we get∥∥f(−y) + f(y)

∥∥ ≤ ∥∥f(0)
∥∥ = 0

and so f(−y) = −f(y) for all y ∈ X . Letting x = 0 and replacing z by
−z in (2.1), we have∥∥f(y + z) + f(−y) + f(−z)

∥∥ ≤ ∥∥f(0)
∥∥ = 0

for all y, z ∈ X . Thus we obtain

f(y + z) = f(y) + f(z)

for all y, z ∈ X .

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0. If there
is a function ϕ : X3 → [0,∞) satisfying

(2.2) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ ϕ(x, y, z)

and

(2.3) ϕ̃(x, y, z) :=

∞∑
j=0

1

2j
ϕ
(
(−2)jx, (−2)jy, (−2)jz

)
<∞

for all x, y, z ∈ X , then there exists a unique additive mapping A : X →
Y such that

(2.4)
∥∥f(x)−A(x)

∥∥ ≤ 1

2
ϕ̃(0,−x, x)

for all x ∈ X .

Proof. Replacing x, y, z by 0,−(−2)nx, (−2)nx, respectively, and di-
viding by 2n+1 in (2.2), since f(0) = 0, we get∥∥∥∥f

(
(−2)n+1x

)
(−2)n+1

−
f
(
(−2)nx

)
(−2)n

∥∥∥∥ ≤ 1

2n+1
ϕ
(
0,−(−2)nx, (−2)nx

)
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for all x ∈ X and all nonnegative integers n. From the above inequality,
we have

∥∥∥∥f
(
(−2)nx

)
(−2)n

−
f
(
(−2)mx

)
(−2)m

∥∥∥∥ ≤
n−1∑
j=m

∥∥∥∥f
(
(−2)j+1x

)
(−2)j+1

−
f
(
(−2)jx

)
(−2)j

∥∥∥∥
≤

n−1∑
j=m

1

2j+1
ϕ
(
0,−(−2)jx, (−2)jx

)
(2.5)

for all x ∈ X and all nonnegative integers m,n with m < n. By the

condition (2.3), the sequence
{
f((−2)nx)

(−2)n

}
is a Cauchy sequence for all

x ∈ X . Since Y is complete, the sequence
{
f((−2)nx)

(−2)n

}
converges for all

x ∈ X . So one can define a mapping A : X → Y by

A(x) := lim
n→∞

f
(
(−2)nx

)
(−2)n

for all x ∈ X . Taking m = 0 and letting n tend to ∞ in (2.5), we have
the inequality (2.4).

Replacing x, y, z by (−2)nx, (−2)ny, (−2)nz, respectively, and divid-
ing by 2n in (2.2), we obtain

∥∥∥∥f
(
(−2)n(x− y)

)
(−2)n

+
f
(
(−2)n(y − z)

)
(−2)n

+
f
(
(−2)n(z)

)
(−2)n

∥∥∥∥
≤
∥∥∥∥2f

(
(−2)n(x)

)
(−2)n

∥∥∥∥+
1

2n
ϕ
(
(−2)nx, (−2)ny, (−2)nz

)
for all x, y, z ∈ X and all nonnegative integers n. Since (2.3) gives that

lim
n→∞

1

2n
ϕ
(
(−2)nx, (−2)ny, (−2)nz

)
= 0

for all x, y, z ∈ X , letting n tend to ∞ in the above inequality, we see
that A satisfies the inequality (2.1) and so it is additive by Lemma 2.1.

Let A′ : X → Y be another additive mapping satisfying (2.4). Since
both A and A′ are additive, we have
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∥∥A(x)−A′(x)
∥∥

=
1

2n
∥∥A((−2)nx

)
−A′

(
(−2)nx

)∥∥
≤ 1

2n
(∥∥A((−2)nx

)
− f

(
(−2)nx

)∥∥+
∥∥f((−2)nx

)
−A′

(
(−2)nx

)∥∥)
≤ 1

2n
ϕ̃
(
0,−(−2)nx, (−2)nx

)
=
∞∑
j=n

1

2j
ϕ
(
0,−(−2)jx, (−2)jx

)
which goes to zero as n → ∞ for all x ∈ X by (2.3). Therefore, A is a
unique additive mapping satisfying (2.4), as desired.

Corollary 2.3. Let θ ∈ [0,∞) and p ∈ [0, 1) and let f : X → Y be
an odd mapping such that

(2.6) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X . Then there exists a unique Cauchy additive mapping
A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2p
‖x‖p(2.7)

for all x ∈ X .

Proof. In Theorem 2.2, take ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for
all x, y, z ∈ X . Then we have the desired result.

Theorem 2.4. Let f : X → Y be a mapping with f(0) = 0. If there
is a function ϕ : X3 → [0,∞) satisfying (2.2) and

(2.8) ϕ̃(x, y, z) :=
∞∑
j=1

2jϕ

(
x

(−2)j
,

y

(−2)j
,

z

(−2)j

)
<∞

for all x, y, z ∈ X , then there exists a unique additive mapping A : X →
Y such that

(2.9)
∥∥f(x)−A(x)

∥∥ ≤ 1

2
ϕ̃(0,−x, x)

for all x ∈ X .
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Proof. Replacing x, y, z by 0, −x(−2)n ,
x

(−2)n , respectively, and multiply-

ing by 2n−1 in (2.2), since f(0) = 0, we have∥∥∥∥(−2)nf

(
x

(−2)n

)
−(−2)n−1f

(
x

(−2)n−1

)∥∥∥∥ ≤ 2n−1ϕ

(
0,
−x

(−2)n
,

x

(−2)n

)
for all x ∈ X and all n ∈ N. From the above inequality, we get∥∥∥∥(−2)nf

(
x

(−2)n

)
− (−2)mf

(
x

(−2)m

)∥∥∥∥(2.10)

≤
n∑

j=m+1

∥∥∥∥(−2)jf

(
x

(−2)j

)
− (−2)j−1f

(
x

(−2)j−1

)∥∥∥∥
≤

n∑
j=m+1

2j−1ϕ

(
0,
−x

(−2)j
,

x

(−2)j

)
for all x ∈ X and all nonnegative integers m,n with m < n. From (2.8),

the sequence
{

(−2)nf
(

x
(−2)n

)}
is a Cauchy sequence for all x ∈ X .

Since Y is complete, the sequence
{

(−2)nf
(

x
(−2)n

)}
converges for all

x ∈ X . So one can define a mapping A : X → Y by

A(x) := lim
n→∞

(−2)nf

(
x

(−2)n

)
for all x ∈ X . To prove that A satisfies (2.9), putting m = 0 and letting
n→∞ in (2.10), we have

‖f(x)−A(x)‖ ≤
∞∑
j=1

2j−1ϕ

(
0,
−x

(−2)j
,

x

(−2)j

)
=

1

2
ϕ̃(0,−x, x)

for all x ∈ X .
Replacing x, y, z by x

(−2)n ,
y

(−2)n ,
z

(−2)n , respectively, and multiplying

by 2n in (2.2), we obtain∥∥∥∥(−2)nf

(
x− y
(−2)n

)
+ (−2)nf

(
y − z
(−2)n

)
+ (−2)nf

(
z

(−2)n

)∥∥∥∥
≤
∥∥∥∥(−2)nf

(
x

(−2)n

)∥∥∥∥+ 2nϕ

(
x

(−2)n
,

y

(−2)n
,

z

(−2)n

)
for all x, y, z ∈ X and all nonnegative integers n. Since (2.8) gives that

lim
n→∞

2nϕ

(
x

(−2)n
,

y

(−2)n
,

z

(−2)n

)
= 0
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for all x, y, z ∈ X , if we let n→∞ in the above inequality, then we have∥∥A(x− y) +A(y − z) +A(z)
∥∥ ≤ ∥∥A(x)

∥∥
for all x, y, z ∈ X . By Lemma 2.1, the mapping A is additive. The rest
of the proof is similar to the corresponding part of the proof of Theorem
2.2.

Corollary 2.5. Let p > 1 and θ be non-negative real numbers and
let f : X → Y be an odd mapping such that

(2.11) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X . Then there exists a unique Cauchy additive mapping
A : X → Y such that

(2.12) ‖f(x)−A(x)‖ ≤ 2θ

2p − 2
‖x‖p

for all x ∈ X .

Proof. In Theorem 2.4, take ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for
all x, y, z ∈ X . Then, we have the desired result.

3. Hyers-Ulam stability using fixed point methods

Now, using the fixed point method, we investigate the Hyers-Ulam
stability of the functional inequality (2.1) in Banach spaces.

Theorem 3.1. Suppose that an odd mapping f : X → Y satisfies
the inequality

‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ φ(x, y, z)(3.1)

for all x, y, z ∈ X , where φ : X 3 → [0,∞) is a function. If there exists
L < 1 such that

φ(x, y, z) ≤ 1

2
Lφ(2x, 2y, 2z)(3.2)

for all x, y, z ∈ X , then there exists a unique Cauchy additive mapping
A : X → Y satisfying

‖f(x)−A(x)‖ ≤ L

2− 2L
φ(0,−x, x)(3.3)

for all x ∈ X .
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Proof. Consider a set S := {g | g : X → Y} and introduce a general-
ized metric d on S as follows:

d(g, h) = dφ(g, h) := inf Sφ(g, h),

where

Sφ(g, h) := {C ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Cφ(0,−x, x) for all x ∈ X}

for all g, h ∈ S. Now we show that (S, d) is complete. Let {hn} be a
Cauchy sequence in (S, d). Then, for any ε > 0 there exists an integer
Nε > 0 such that d(hm, hn) < ε for all m,n ≥ Nε. Since d(hm, hn) =
inf Sφ(hm, hn) < ε for all m,n ≥ Nε, there exists C ∈ (0, ε) such that

‖hm(x)− hn(x)‖ ≤ Cφ(0,−x, x) ≤ εφ(0,−x, x)(3.4)

for all m,n ≥ Nε and all x ∈ X . So {hn(x)} is a Cauchy sequence in Y
for each x ∈ X . Since Y is complete, {hn(x)} converges for each x ∈ X .
Thus a mapping h : X → Y can be defined by

h(x) := lim
n→∞

hn(x)(3.5)

for all x ∈ X . Letting n→∞ in (3.4), we have

m ≥ Nε ⇒ ‖hm(x)− h(x)‖ ≤ εφ(0,−x, x)

⇒ ε ∈ Sφ(hm, h)

⇒ d(hm, h) = inf Sφ(hm, h) ≤ ε

for all x ∈ X . This means that the Cauchy sequence {hn} converges to
h in (S, d). Hence (S, d) is complete.

Define a mapping Λ : S → S by

Λh(x) := 2h
(x

2

)
(3.6)

for all x ∈ X . We claim that Λ is strictly contractive on S. For any given
g, h ∈ S, let Cgh ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ Cgh.
Then

d(g, h) ≤ Cgh
⇒ ‖g(x)− h(x)‖ ≤ Cghφ(0,−x, x) for all x ∈ X

⇒
∥∥∥2g
(x

2

)
− 2h

(x
2

)∥∥∥ ≤ 2Cghφ
(

0,−x
2
,
x

2

)
for all x ∈ X

⇒
∥∥∥2g
(x

2

)
− 2h

(x
2

)∥∥∥ ≤ LCghφ(0,−x, x) for all x ∈ X ,

that is, d(Λg,Λh) ≤ LCgh. Hence we see that d(Λg,Λh) ≤ Ld(g, h) for
any g, h ∈ S. Therefore Λ is strictly contractive mapping on S with the
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Lipschitz constant L ∈ (0, 1). Putting x = 0, y = −x and z = x in (3.1),
we have

‖f(2x)− 2f(x)‖ ≤ φ(0,−x, x)(3.7)

for all x ∈ X . It follows from (3.7) that∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ φ(0,−x
2
,
x

2

)
≤ L

2
φ(0,−x, x)(3.8)

for all x ∈ X . Thus d(f,Λf) ≤ L
2 . Therefore, it follows from Theorem

1.1 that the sequence {Λnf} converges to a fixed point A of Λ, i.e.,

A : X → Y, A(x) = lim
n→∞

(Λf)(x) = lim
n→∞

2nf
( x

2n

)
and A(2x) = 2A(x) for all x ∈ X . Also A is the unique fixed point of Λ
in the set S∗ = {g ∈ S | d(f, g) <∞} and

d(A, f) ≤ 1

1− L
d(Λf, f) ≤ L

2− 2L
,

i.e., the inequality (3.3) holds for all x ∈ X . It follows from the definition
of A and (3.1) that∥∥A(x− y) +A(y − z) +A(z)

∥∥ ≤ ∥∥A(x)
∥∥

for all x, y, z ∈ X . By Lemma 2.1, the mapping A : X → Y is a Cauchy
additive mapping. Therefore, there exists a unique Cauchy additive
mapping A : X → Y satisfying (3.3).

Corollary 3.2. Let p > 1 and θ be non-negative real numbers and
let f : X → Y be an odd mapping such that

(3.9) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X . Then there exists a unique Cauchy additive mapping
A : X → Y such that

(3.10) ‖f(x)−A(x)‖ ≤ 2p + 1

2p − 2
θ‖x‖p

for all x ∈ X .

Proof. In Theorem 3.1, take φ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for
all x, y, z ∈ X . Then, we can choose L = 21−p and we have the desired
result.
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Theorem 3.3. Suppose that an odd mapping f : X → Y satisfies
the inequality

‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ φ(x, y, z)(3.11)

for all x, y, z ∈ X , where φ : X 3 → [0,∞) is a function. If there exists
L < 1 such that

φ(x, y, z) ≤ 2Lφ
(x

2
,
y

2
,
z

2

)
(3.12)

for all x, y, z ∈ X , then there exists a unique Cauchy additive mapping
A : X → Y satisfying

‖f(x)−A(x)‖ ≤ 1

2− 2L
φ(0,−x, x)(3.13)

for all x ∈ X .

Proof. Consider the complete generalized metric space (S, d) given in
the proof of Theorem 3.1. Now we consider the linear mapping Λ : S →
S given by

Λh(x) =
1

2
h(2x)

for all x ∈ X . For any given g, h ∈ S, let Cgh ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ Cgh. Hence we obtain

d(Λg,Λh) ≤ Ld(g, h)

for all g, h ∈ S. It follows from (3.7) that d(f,Λf) ≤ 1
2 . The rest of

the proof is similar to the corresponding part of the proof of Theorem
3.1.

Corollary 3.4. Let θ ∈ [0,∞) and p ∈ [0, 1) and let f : X → Y be
an odd mapping such that

(3.14) ‖f(x− y) + f(y − z) + f(z)‖ ≤ ‖f(x)‖+ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X . Then there exists a unique Cauchy additive mapping
A : X → Y such that

‖f(x)−A(x)‖ ≤ 1 + 2p

2− 2p
θ‖x‖p(3.15)

for all x ∈ X .

Proof. In Theorem 3.3, take φ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p) for
all x, y, z ∈ X . Then we can choose L = 2p−1 and we have the desired
result.
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